Reduced Operator Inference for Nonlinear Partial Differential Equations

نویسندگان

چکیده

We present a new scientific machine learning method that learns from data computationally inexpensive surrogate model for predicting the evolution of system governed by time-dependent nonlinear partial differential equation (PDE), an enabling technology many computational algorithms used in engineering settings. Our formulation generalizes to function space PDE setting Operator Inference previously developed [B. Peherstorfer and K. Willcox, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 196--215] systems ordinary equations. The brings together two main elements. First, ideas projection-based reduction are explicitly parametrize learned low-dimensional polynomial operators which reflect known form governing PDE. Second, supervised tools infer reduced this physics-informed parametrization. For whose PDEs contain more general (nonpolynomial) nonlinearities, performance can be improved through use lifting variable transformations, expose structure proposed is demonstrated on examples: heat problem demonstrates benefits terms consistency with underlying continuous truth, three-dimensional combustion simulation over 18 million degrees freedom, models achieve accurate predictions dimension five orders magnitude runtime up nine magnitude.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Nonlinear Partial Differential Equations

The ultimate topic to be touched on in this book is the vast and active field of nonlinear partial differential equations. Leaving aside quantum mechanics, which remains to date an inherently linear theory, most real-world physical systems, including gas dynamics, fluid mechanics, elasticity, relativity, ecology, neurology, thermodynamics, and many more, are modeled by nonlinear partial differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2022

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/21m1393972